近年来,有一个新增专业火了——数据科学与大数据技术不过,虽说大数据概念如此火热,学生和家长在选择专业时,必须先想好这几个问题:当前
近年来,有一个新增专业火了——数据科学与大数据技术
不过,虽说“大数据”概念如此火热,学生和家长在选择专业时,必须先想好这几个问题:当前大数据行业真的是人才稀缺吗?学了几年后,大数据行业会不会产能过剩?大数据行业最终需要什么样的人才?
本文接下来就为您一一解析:
1大数据学习什么?
大数据领域三个大的技术方向:
方向一:Hadoop大数据开发方向
方向二:数据挖掘、数据分析&机器学习方向
方向三:大数据运维&云计算方向
精通任何方向之一者,均会 “ 前(钱)”途无量。
三个方向中,大数据开发是基础。以Hadoop开发工程师为例,Hadoop入门月薪已经达到了 8K 以上,工作1年月薪可达到 1.2W 以上,具有2-3年工作经验的hadoop人才年薪可以达到 30万—50万,一般需要大数据处理的公司基本上都是大公司,所以学习大数据专业也是进大公司的捷径。
2当前大数据行业真的是人才稀缺吗?
答:对!未来人才缺口150万,数据分析人才最稀缺。
先看大数据人才缺口有多大。LinkedIn(领英公司)发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。
其中数据分析人才最为稀缺、供给指数最低。同时,数据分析人才跳槽速度也最快,平均跳槽间隔为19.8个月。
而清华大学计算机系教授武永卫去年透露了一组数据:未来3-5年,中国需要180万数据人才,但目前只有约30万人。
3大数据行业未来会产能过剩吗?
答:提供大数据技术与应用服务的第三方公司面临调整,未来发展会趋集中。
关于“大数据概念是否被过度炒作”的讨论,其实2013年的夏季达沃斯就有过。彼时支持“炒作”观点的现场观众达54.5%。对此,持反对意见的北京大学光华管理学院副教授苏萌提出了三个理由:
1.不同机构间的数据还未真正流动起来,目前还只是数据“孤岛”;
2.完整的生态产业链还未形成,尽管通过行为数据分析已能够分辨出一个消费者的喜好,但从供应到购买的链条还没建成;
3.数据分析人才仍然极度匮乏。
近一年间,一些大数据公司相继出现裁员、业务大调整等情况,部分公司出现亏损。那都是什么公司面临危机呢?
基于数据归属,涉及大数据业务的公司其实可以分为两类:
一类是自身拥有数据的公司;
另一类是整合数据资源,提供大数据技术与应用服务的第三方服务商。
目前行业整合出现盈利问题的公司多集中在第三方服务商。
对此,LinkedIn(领英)中国技术副总裁王迪表示,大数据业务要产生规模效益,至少要具备三点:算法、计算平台以及数据本身。
“第三方大数据创业公司在算法上有一技之长,而计算能力实际上已经匀化了,传统企业如果用好了,和大数据创业公司没有区别,甚至计算能力更强,而数据获取方面,很多数据在传统行业内部并没有共享出来,第三方大数据公司获取这些数据是比较困难的,最后可能谁有数据,谁产生的价值更高。”说白了,数据为王。
在2013年,拿到千万级A轮融资的大数据企业不足10家,到2015年,拿到千万级以上A轮融资的企业已经超过30家。直到2016年互联网资本寒冬,大数据行业投资热度有所减退,大数据行业是否也存在产能过剩?
王迪认为,目前的行业整合属于正常现象,“经过市场的优胜劣汰,第三方服务领域会出现一些做得比较好的公司,其他公司可能被淘汰或转型做一些垂直行业应用。从社会来看,总的需求量一定是增加的,而对于供给侧,经过行业自然的洗牌,最终会集中在几家优秀的行业公司。”
3需要什么样的大数据人才?
教育部公布的第二批获准开设“数据科学与大数据技术”的高校名单,加上第一批获批的北京大学、对外经济贸易大学、中南大学,一共35所高校获批该专业。
大数据人才培养涉及到两方面问题:
1.交叉性学科的人才培养方案是否与市场需求相匹配;
2.学科建设的周期与行业快速更新之间的差距怎样弥合。
对于第一个问题,“电商热”时期开设的电子商务专业是一个可吸取经验的案例。2000年,教育部高教司批准了第一批高校开设电子商务本科专业。作为一个复合型专业,电子商务的本科教学涵盖了管理、技术、营销三方面的课程。电子商务领域人才需求量大,但企业却无法从电子商务专业中找到合适的人才,原因何在?
职业规划专家姜萌认为,并不是某一个专业对应一个行业热点,而是一个专业集群对应一个行业热点。“比如电子商务专业,我们到电子商务公司里会发现,不是学电子商务的人在做这些工作,而是每个专业各司其职,比如计算机、设计、物流管理、营销、广告、金融等等。现在行业的复合型工作都是由一个专业集群来完成的,而不是一个人来复合一堆专业特点。”
大数据专业的人才培养也同样走复合型路线,复旦大学大数据学院的招生简章显示,学院本科人才培养以统计学、计算机科学和数学为三大基础支撑性学科,以生物学、医学、环境科学、经济学、社会学、管理学等为应用拓展性学科,具备典型的交叉学科特征。
LinkedIn(领英)中国技术副总裁王迪指出,“从企业应用的角度来看,大数据行业里从事相关职能的同学背景是各异的,大数据作为一个人才培养方向还在探索中,在这个阶段,高校尝试开设硕士课程是很好的实践,但开设一类的本科专业还为时过早。”
另一方面,专业人才培养的周期较长,而行业热点不断更新轮替,中间产生的时间差使得新兴专业的志愿填报具备了一定风险。
王迪认为,“从今天的产业实践上看,大数据领域依然是从现有专业中挑选人才,教育和市场发展总是有一定差距的,学生本科四年,加上硕士阶段已经是七年之后的事情了,产业已经演进了很多,而教学大纲并不会跟进得那么快。”
因此,尽管大数据的应用前景毋庸置疑,但在人才培养层面,复合型人才培养方案会不会重走电子商务专业的老路?学校教育如何赶上行业发展速度?这些都是值得进一步商榷的问题。
附
35所获批“数据科学与大数据技术专业”高校名单
第一批”数据科学与大数据技术专业”获批名单
第二批”数据科学与大数据技术专业”获批名单
对这个专业,你心动了吗?