您现在所在的位置:首页 >学习资源 > JAVA入门教材 > 什么是大数据?(大数据入门必读五个问题)

什么是大数据?(大数据入门必读五个问题)

来源:奇酷教育 发表于:

随着大数据的火热,越来越多的小伙伴开始对大数据产生了兴趣。但是大数据到底是什么?我们为大家收集整理了五个常见的大数据问题,以帮助大

 

1什么是大数据?

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。

大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

根据维基百科的定义,大数据是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。

2大数据时代是什么意思?

大数据时代就是说,在未来,我们认为会存在这样一个时代。那个时代里,几乎我们每一个举动,都会被记录,并变成数据被存储起来,无数的数据就组合成了你本人的一个信息库。通过这个信息库,你的一言一行,你的思想都变得可预测。

大数据作为云计算、物联网之后IT行业又一大颠覆性的技术革命。云计算主要为数据资产提供了保管、访问的场所和渠道,而数据才是真正有价值的资产。企业内部的经营交易信息、互联网世界中的商品物流信息,互联网世界中的人与人交互信息、位置信息等,其数量将远远超越现有企业IT架构和基础设施的承载能力,实时性要求也将大大超越现有的计算能力。如何盘活这些数据资产,使其为国家治理、企业决策乃至个人生活服务,是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。

3大数据、数据分析和数据挖掘的区别

大数据、数据分析、数据挖掘的区别是,大数据是互联网的海量数据挖掘,而数据挖掘更多是针对内部企业行业小众化的数据挖掘,数据分析就是进行做出针对性的分析和诊断,大数据需要分析的是趋势和发展,数据挖掘主要发现的是问题和诊断:

1大数据(big data):

指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产;

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)Veracity(真实性) 。

2数据分析:

是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。

数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。

3数据挖掘(Data mining):

又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

简而言之:

大数据是范围比较广的数据分析和数据挖掘。

按照数据分析的流程来说,数据挖掘工作较数据分析工作靠前些,二者又有重合的地方,数据挖掘侧重数据的清洗和梳理。

数据分析处于数据处理的最末端,是最后阶段。

数据分析和数据挖掘的分界、概念比较模糊,模糊的意思是二者很难区分。

大数据概念更为广泛,是把创新的思维、信息技术、统计学等等技术的综合体,每个人限于学术背景、技术背景,概述的都不一样。

4大数据可以做什么?

1对大数据的处理分析正成为新一代信息技术融合应用的结点

移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。

大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(Ramayya Krishnan,卡内基·梅隆大学海因兹学院院长)。

2大数据是信息产业持续高速增长的新引擎

面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。

3大数据利用将成为提高核心竞争力的关键因素,各行各业的决策正在从“业务驱动” 转变“数据驱动”

在高校来说,对大数据的分析可以帮助制定更加精准有效的管理策略提供决策支持;可以为在校师生提供更加及时和个性化的服务,大大促进学校综合管理水平的提升。

4大数据时代科学研究的方法手段将发生重大改变

例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。

5大数据的商业价值

1对顾客群体细分

“大数据”可以对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。瞄准特定的顾客群体来进行营销和服务是商家一直以来的追求。云存储的海量数据和“大数据”的分析技术使得对消费者的实时和极端的细分有了成本效率极高的可能。

2模拟实境

运用“大数据”模拟实境,发掘新的需求和提高投入的回报率。现在越来越多的产品中都装有传感器,汽车和智能手机的普及使得可收集数据呈现爆炸性增长。微博等社交网络也在产生着海量的数据。

云计算和“大数据”分析技术使得商家可以在成本效率较高的情况下,实时地把这些数据连同交易行为的数据进行储存和分析。交易过程、产品使用和人类行为都可以数据化。“大数据”技术可以把这些数据整合起来进行数据挖掘,从而在某些情况下通过模型模拟来判断不同变量(比如不同地区不同促销方案)的情况下何种方案投入回报最高。

3提高投入回报率

提高“大数据”成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。“大数据”能力强的部门可以通过云计算、互联网和内部搜索引擎把”大数据”成果和“大数据”能力比较薄弱的部门分享,帮助他们利用“大数据”创造商业价值。

4数据储存空间出租

企业和个人有着海量信息存储的需求,只有将数据妥善存储,才有可能进一步挖掘其潜在价值。具体而言,这块业务模式又可以细分为针对个人文件存储和针对企业用户两大类。主要是通过易于使用的API,用户可以方便地将各种数据对象放在云端,然后再像使用水、电一样按用量收费。

5管理客户关系

客户管理应用的目的是根据客户的属性(包括自然属性和行为属性),从不同角度深层次分析客户、了解客户,以此增加新的客户、提高客户的忠诚度、降低客户流失率、提高客户消费等。对中小客户来说,专门的CRM显然大而贵。不少中小商家将聊天软件作为初级CRM来使用。比如把老客户加到群里,在群朋友圈里发布新产品预告、特价销售通知,完成售前售后服务等。

6个性化精准推荐

在运营商内部,根据用户喜好推荐各类业务或应用是常见的,比如应用商店软件推荐等,而通过关联算法、文本摘要抽取、情感分析等智能分析算法后,可以将之延伸到商用化服务,利用数据挖掘技术帮助客户进行精准营销,今后盈利可以来自于客户增值部分的分成。

以高校日常管理为例,通过用户行为数据进行分析后,可以给需要的人发送需要的信息,这样的信息就是有价值的。在成都大学,在校师生都可以通过使用手机门户,实时收到自己感兴趣的消息推送。

7数据搜索

数据搜索是一个并不新鲜的应用,随着“大数据”时代的到来,实时性、全范围搜索的需求也就变得越来越强烈。我们需要能搜索各种社交网络、用户行为等数据。其商业应用价值是将实时的数据处理与分析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。