您现在所在的位置:首页 >关于奇酷 > 行业动态 > 七个好用的装饰器

七个好用的装饰器

来源:奇酷教育 发表于:

七个好用的装饰器

  七个好用的装饰器:

 
  1、dispach
  Python 天然支持多态,但使用 dispatch 可以让你的代码更加容易阅读。
 
  安装:
 
  pip install multipledispatch
  使用:
 
  >>> from multipledispatch import dispatch
 
  >>> @dispatch(int, int)
  ... def add(x, y):
  ...     return x + y
 
  >>> @dispatch(object, object)
  ... def add(x, y):
  ...     return "%s + %s" % (x, y)
 
  >>> add(1, 2)
  3
 
  >>> add(1, 'hello')
  '1 + hello'
 
  2、click
  click 可以很方便地让你实现命令行工具。
 
  安装:
 
  pip install click
  使用:demo2.py :
 
  import click
 
  @click.command()
  @click.option('--count', default=1, help='Number of greetings.')
  @click.option('--name', prompt='Your name',
                help='The person to greet.')
  def hello(count, name):
      """Simple program that greets NAME for a total of COUNT times."""
      for x in range(count):
          click.echo(f"Hello {name}!")
 
  if __name__ == '__main__':
      hello()
  运行结果:
 
   python demo2.py --count=3 --name=joih
  Hello joih!
  Hello joih!
  Hello joih!
   python demo2.py --count=3
  Your name: somenzz
  Hello somenzz!
  Hello somenzz!
  Hello somenzz!
 
  3、celery
  分布式的任务队列,非 Celery 莫属。
 
  Celery 介绍和详细用法,可以参考前文:
 
  开发环境下,如何通过一个命令让 fastapi 和 celery 一起工作
 
  一文搞定 celery 任务远程调用
 
  from celery import Celery
 
  app = Celery('tasks', broker='pyamqp://guest@localhost//')
 
  @app.task
  def add(x, y):
      return x + y
 
  4、deprecated
  这个相信大家在使用别的包时都遇到过,当要下线一个老版本的函数的时候就可以使用这个装饰器。
 
  安装:
 
  pip install Deprecated
  使用:demo4.py
 
  from deprecated import deprecated
  @deprecated ("This function is deprecated, please do not use it")
  def func1():
      pass
 
  func1()
  运行效果如下:
 
   python demo4.py
  demo4.py:6: DeprecationWarning: Call to deprecated function (or staticmethod) func1. (This function is deprecated, please do not use it)
    func1()
 
  5、deco.concurrent
  安装:
 
  pip install deco
  使用 DECO 就像在 Python 程序中查找或创建两个函数一样简单。我们可以用 @concurrent 装饰需要并行运行的函数,用 @synchronized 装饰调用并行函数的函数,使用举例:
 
  from deco import concurrent, synchronized 
  @concurrent # We add this for the concurrent function
  def process_url(url, data):
    #Does some work which takes a while
    return result
 
  @synchronized # And we add this for the function which calls the concurrent function
  def process_data_set(data):
    results = {}
    for url in urls:
      results[url] = process_url(url, data)
    return results
 
  6、cachetools
  缓存工具
 
  安装:
 
  pip install cachetools
  使用:
 
  from cachetools import cached, LRUCache, TTLCache
 
  # speed up calculating Fibonacci numbers with dynamic programming
  @cached(cache={})
  def fib(n):
      return n if n < 2 else fib(n - 1) + fib(n - 2)
 
  # cache least recently used Python Enhancement Proposals
  @cached(cache=LRUCache(maxsize=32))
  def get_pep(num):
      url = 'http://www.python.org/dev/peps/pep-%04d/' % num
      with urllib.request.urlopen(url) as s:
          return s.read()
 
  # cache weather data for no longer than ten minutes
  @cached(cache=TTLCache(maxsize=1024, ttl=600))
  def get_weather(place):
      return owm.weather_at_place(place).get_weather()
 
  7、retry
  重试装饰器,支持各种各样的重试需求。
 
  安装:
 
  pip install tenacity
  使用:
 
  import random
  from tenacity import retry
 
  @retry
  def do_something_unreliable():
      if random.randint(0, 10) > 1:
          raise IOError("Broken sauce, everything is hosed!!!111one")
      else:
          return "Awesome sauce!"
 
  @retry(stop=stop_after_attempt(7))
  def stop_after_7_attempts():
      print("Stopping after 7 attempts")
      raise Exception
 
 
  @retry(stop=stop_after_delay(10))
  def stop_after_10_s():
      print("Stopping after 10 seconds")
      raise Exception
 
  @retry(stop=(stop_after_delay(10) | stop_after_attempt(5)))
  def stop_after_10_s_or_5_retries():
      print("Stopping after 10 seconds or 5 retries")
      raise Exception