为什么Python是数据科学最好的选择?奇酷教育全方位解析!
来源:
奇酷教育 发表于:
Python编程语言拥有诸多用于网络应用开发、图形用户界面、数据分析、数据可视化等工作的框架和特性。Python可能不是网络应用开发的理想
Python编程语言拥有诸多用于网络应用开发、图形用户界面、数据分析、数据可视化等工作的框架和特性。Python可能不是网络应用开发的理想选择,但是正被很多机构广泛用于评估大型数据集(dataset)、数据可视化、进行数据分析或制作原型。在数据科学领域,Python编程语言正不断获得用户的亲睐。
为什么将Python用于数据科学是最好的选择?
Python编程是驱动大数据、金融、统计和数字运算的核心科技,而它的语法却像英语一样易懂。近来,由于拥有多个针对机器学习、自然语言处理、数据视觉化、数据探索、数据分析和数据挖掘的插件,丰富的Python数据科学生态体系得到了较大的发展,甚至有将数据科学社区Python化的趋势。今天,面向数据科学的Python已经具备了清洗、转换和处理大数据的所有工具。对于数据分析师岗位来说,掌握Python也是最受欢迎的技能。一名具备Python编程能力的数据科学家,可以在纽约挣到平均年薪14万美元的工资。
为什么数据科学家喜欢使用Python语言?
数据科学家喜欢那些能够快速输出原型,帮助他们轻松地记录下自己的想法和模型的编程环境。他们喜欢通过分析巨量的数据集,得出结论,完成工作。而Python编程语言则是开发数据科学应用的多面手,因为它能帮助数据科学家,以最短最优的时间进行编码、调试、运行并获取结果,从而高效地完成工作。
Python遵循统一的设计哲学,注重可用性、可读性,对于数据科学的学习曲线也较低。
Python有很高的可扩展性,且与Matlab、Stata等语言相比,运行更加快速。
另外,Python生态系统中还在涌现出更多的数据视觉化库,以及炫酷的应用编程结构,目的是使用图形更好地展现数据分析的结果。Python社区有着诸如Sci-Kit learn、NumPy、Pandas、Statsmodel和SciPy等许多优秀的数据分析库。这些库的数量还在不断增长。
奇酷教育原创开发的Python课程不仅涵盖Web前后端开发和网络爬虫技术,还包括独有的数据分析和机器学习,前端、服务端一网打尽。可从事Web前端、Web服务端、服务器运维、网络爬虫、大数据分析、机器学习等多种热门职业,学员百分百高薪就业!
参加奇酷教育的
Python培训课程,与很多从零基础开始的学员共同学习,有专业的多年经验Python讲师为你解答遇到的各种编程问题,会少走许多的弯路,缩短学习的时间,全面系统的掌握Python编程需要学习的各种知识和要点。